MAT 3701: HW Assignment Template

My Name
Hi! This is one of my favorite resources for math symbols:
https://en.wikibooks.org/wiki/LaTeX/Mathematics.
1.15 In how many ways can six tosses of a coin yield two heads and four tails?

SOLUTION: By Theorem 1.7,

$$
\binom{6}{2}=\frac{6!}{2!\cdot 4!}=15
$$

1.1 Here is an example of a probability tree, more examples can be found here, http://www.texample.net/tikz/examples/feature/trees/

SOLUTION:

2.1 (a)
(b)

1. Prove by induction. Show that for any $n \in \mathbb{N}$,

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$

Proof. Base case $n=1$: If $n=1$, the left side is 1 and the right side is $\frac{1(2)}{2}=1$. So, the statement holds when $n=1$.
Inductive hypothesis: Suppose the statement holds for some n. We want to show true for $n+1$, i.e.,

$$
\sum_{i=1}^{n+1} i=\frac{(n+1)(n+2)}{2}
$$

Inductive step:

$$
\begin{aligned}
\sum_{i=1}^{n+1} i & =(n+1)+\sum_{i=1}^{n} i \\
& =(n+1)+\frac{n(n+1)}{2}, \text { by our inductive hypothesis } \\
& =\frac{2(n+1)}{2}+\frac{n(n+1)}{2} \\
& =\frac{2(n+1)+n(n+1)}{2} \\
& =\frac{(n+1)(n+2)}{2}
\end{aligned}
$$

which is our right side. So, the statement holds for $n+1$. By the principle of mathematical induction, the statement holds for all $n \in \mathbb{N}$.
2. Find numbers a, b, and c, so that $\int_{3}^{7} e^{(2 x+1)^{2}} d x=c \int_{a}^{b} e^{u^{2}} d u$.

SOLUTION: Let $u=2 x+1$. Then $d u=2 d x$, ie, $d x=\frac{d u}{2}$. Hence,

$$
\int_{x=3}^{x=7} e^{(2 x+1)^{2}} d x=\frac{1}{2} \int_{7}^{15} e^{u^{2}} d u
$$

6.3 We will encounter this integral in chapter $6, \int_{0}^{\infty} x^{n} e^{-x} d x=n!$.

Can you solve

$$
\int_{0}^{1} \int_{0}^{1} x^{2} y^{2} d x d y ?
$$

